

## EGOLF RECOMMENDATION 011-2017

| Subject of Recommendation                   | EN 1363-1 rate of deflection – timestep in    |
|---------------------------------------------|-----------------------------------------------|
|                                             | calculations                                  |
| Related test standard                       | EN 1363-1:2012 Fire resistance tests: General |
|                                             | requirements                                  |
| Date of issue                               |                                               |
| Reference original query                    | TC2 N779 Helpdesk 2015-08                     |
| Previous publication number (if applicable) | ·                                             |
| Keywords (max. 20)                          | Deflection, loadbearing capacity              |
|                                             |                                               |
|                                             |                                               |

## **Problem**

The EN 1363-1 standard does not specify what time step to be used in calculations of rate of deflection (dD/dt) in relation with the performance criteria of the loadbearing capacity of a construction.

## Recommendation

In EN 1363-1 arises the question to determine the rate of deflection. Only is available a discrete-time form of this deflection, resulting from test measurements whose data acquisition provides a sampled signal.

Various numerical differentiation methods exist to compute an approximated derivative of a signal from its discrete values. Amongst them, one of the most commonly applied is the finite difference method.



- ullet D=D(t) [in mm]: continuous time-dependant deflection, only known through its measured values at times  $t_i$
- $t_i = i\Delta t$  [in min]: sampled time (i is an integer)
- $\Delta t = t_i t_{i-1}$  [in min]: sample step, or time step (sampling period)
- $D_i = D(t_i)$  [in mm]: sampled deflection, i.e. deflection measured at time  $t_i$
- $\frac{dD_i}{dt} = \frac{dD}{dt}\Big|_{t_i}$  [in mm/min]: 1<sup>st</sup> time-derivative of D, i.e. rate of deflection at time  $t_i$

•  $\Delta T = k\Delta t$  [in min]: differentiation step (k is an integer greater or equal to 1)

According to the standard EN 1363-1 §10.4.4.2 the deflection measurements shall be made at 1 min intervals during the heating period.

The recommendation is to compute the rate of deflection at each sampled time  $t_i$  using a first-order backward difference  $\frac{dD_i}{dt} = \frac{D_i - D_{i-k}}{\Delta T}$  with  $\Delta T = 1 \, \mathrm{min}$ , which means:

$$\frac{dD_i}{dt} = D_i - D_{i-1\min} \text{ [in mm/min]}$$

## Remark:

The backward differences produce a relative time shift between the calculated derivative and the exact derivative, leading to a delayed estimation of the derivative. It can be shown that the resulting delay for the first order backward scheme amounts to  $\frac{\varDelta T}{2}$ , namely 30 seconds in the present proposition. In other words, the so-computed derivative is shifted to the right by 30 seconds in the time domain. This leads to a less conservative assessment (by 30 seconds) of the "limiting rate of deflection" criterion, and thus a less severe loadbearing capacity performance with regard to fire safety.